Multiobjective optimization in combinatorial wind farms system integration and resistive SFCL using analytical hierarchy process

نویسندگان

  • Amirhasan Moghadasi
  • Arif Sarwat
  • Josep M. Guerrero
چکیده

This paper presents a positive approach for low voltage ride-through (LVRT) improvement of the permanent magnet synchronous generator (PMSG) based on a large wind power plant (WPP) of 50 MW. The proposed method utilizes the conventional current control strategy to provide a reactive power requirement and retain the active power production during and after the fault for the grid codes compliance. Besides that, a resistive superconducting fault current limiter (RSFCL) as an additional selfhealing support is applied outside the WPP to further increase the rated active power of the installation, thereby enhance the dc-link voltage smoothness, as well as the LVRT capability of the 50 MW WPP. This is achieved by limiting the exceed fault current and diminishing the voltage dip level, leading to increase the voltage safety margin of the LVRT curve. Furthermore, the effect of the installed RSFCL on the extreme load reduction is effectively demonstrated. A large WPP has a complicated structure using several components, and the inclusion of RSFCL composes this layout more problematic for optimal performance of the system. Hence, the most-widely decision-making technique based on the analytic hierarchy process (AHP) is proposed for the optimal design of the combinatorial RSFCL and 50 MW WPP to compute the three-dimensional alignment in Pareto front at the end of the optimization run. The numerical simulations verify effectiveness of the proposed approach, using the Pareto optimality concept. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Stability Improvement in DFIG based Wind Energy System using Series Compensating Device

The Doubly Fed Induction Generator (DFIG) is getting wider popularity due to its ability to adapt with variable wind speed and to capture more wind energy. Though DFIG has a salient feature of the fault ride through capability, this is not sufficient to preserve the necessity of the grid code when the DFIG system is connected with the grid. To accomplish this goal, a DC resistive superconductin...

متن کامل

Assessment and Prioritizing the Risks of Urban Rail Transportation by Using Grey Analytical Hierarchy Process (GAHP)

Some incidents in urban railway systems affect the function of the subway’s company adversely and they could disorder the services. These events may inflict irreparable damage to passengers, employees and equipment. By recognizing the hazards existing in this type of transportation system and evaluating and prioritizing risks, we can perform appropriate actions to reduce the probability and sev...

متن کامل

Influence of Fault Current Limiter in Voltage Drop and TRV Considering Wind Farm

Influence of distributed generation systems in the distribution systems can increase the level of short-circuit current. The effectiveness of distributed generation systems is affected by the size, location, type of distributed generation systems technology, and the methods of connecting to distribution systems. Wind turbine system is the examples of distributed generation source. Not only does...

متن کامل

Power flow analysis and optimal locations of resistive type superconducting fault current limiters

Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in t...

متن کامل

An Optimal Design Approach for Resistive and Inductive Superconducting Fault Current Limiters via MCDM Techniques

The design process of a superconducting current limiter (SFCL) requires simulation and definition of its electrical, magnetic and thermal properties in form of equivalent circuits and mathematical models. However, any change in SFCL parameters: dimension, resistance, and operating temperature can affect the limiting mode, quench time, and restore time. In this paper, following the simulation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016